Приложение к ООП СОО МКОУ «СОШ №2» им. генерала армии В.И. Исакова Приказ №51-ОД от 31.08.2020 г

Планируемые результаты изучения курса «Математика10 -11» (базовый уровень)

Рабочая программа учебного предмета «Математика10-11» обеспечивает достижение следующих результатов освоения образовательной программы среднего общего образования:

Личностные результаты:

- представление о профессиональной деятельности учёных-математиков, о развитии математики от Нового времени до наших дней;
- умение ясно формулировать и аргументировано излагать свои мысли; корректность в общении;
- критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- креативность мышления, инициатива, находчивость, активность при решении математических задач;
- способность к эстетическому восприятию математических объектов, задач, решений, рассуждений.

Метапредметные результаты:

- достаточно развитые представления об идеях и методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;
- умение видеть приложения полученных математических заданий в других дисциплинах, в окружающей жизни;
- умение использовать различные источники информации для решения учебных проблем;
- умение принимать решение в условиях неполной и избыточной информации;
- умение применять индуктивные и дедуктивные способы рассуждений;
- умение видеть различные стратегии решения задач, планировать и осуществлять деятельность, направленную на их решение.

Предметные результаты:

Предметные результаты освоения интегрированного курса математики ориентированы на формирование целостных представлений о мире и общей культуры обучающихся путём освоения систематических научных знаний и способов действий на метапредметной основе, а предметные результаты алгебры и начал ориентированы на обеспечение преимущественно общеобразовательной и общекультурной подготовки. Они предполагают:

- 1) сформированность представлений о математике как части мировой культуры и о месте математики в современной цивилизации, о способах описания на математическом языке явлений реального мира;
- 2) сформированность представлений о математических понятиях как о важнейших математических моделях, позволяющих описывать и изучать разные процессы и явления; понимание возможности аксиоматического построения математических теорий;
- 3) владение методами доказательств и алгоритмов решения; умение их применять, проводить доказательные рассуждения в ходе решения задач;
- 4) владение стандартными приёмами решения рациональных и иррациональных, показательных, степенных, тригонометрических уравнений и неравенств, их систем; использование готовых компьютерных программ, в том числе для поиска пути решения и иллюстрации решения уравнений и неравенств;

- 5) сформированность представлений об основных понятиях, идеях и методах математического анализа;
- 6) сформированность представлений о процессах и явлениях, имеющих вероятностный характер, о статистических закономерностях в реальном мире, об основных понятиях элементарной теории вероятностей; сформированность умений находить и оценивать вероятности наступления событий в простейших практических ситуациях и основные характеристики случайных величин;
- 7) владение навыками использования готовых компьютерных программ при решении задач.
- 8) соотносить плоские геометрические фигуры и трехмерные объекты с их описаниями, чертежами, изображениями; различать и анализировать взаимное расположение фигур; изображать геометрические фигуры и тела, выполнять чертеж по условию задачи; решать геометрические задачи, опираясь на изученные свойства планиметрических и стереометрических фигур и отношений между ними, применяя алгебраический и тригонометрический аппарат.

Обучающийся научится:

Элементы теории множеств и математической логики

Выпускник научится:

- оперировать на базовом уровне понятиями: конечное множество, бесконечное множество, числовые множества на координатной прямой, элемент множества, подмножество, пересечение и объединение множеств, отрезок, интервал;
- находить пересечение и объединение двух множеств, представленных графически на числовой прямой;
- строить на числовой прямой подмножество числового множества, заданное простейшими условиями;
- оперировать понятиями: утверждение (высказывание), отрицание утверждения, истинные и ложные утверждения, следствие, частный случай общего утверждения, контрпример;
- распознавать ложные утверждения, ошибки в рассуждениях, в том числе с использованием контрпримеров.

В повседневной жизни и при изучении других учебных предметов:

- использовать числовые множества на координатной прямой;
- проводить логические рассуждения в ситуациях повседневной жизни.

Выпускник получит возможность научиться:

- оперировать понятиями: промежуток с выколотой точкой, графическое представление множеств на координатной плоскости;
 - проверять принадлежность элемента множеству, заданному описанием;
- находить пересечение и объединение нескольких множеств, представленных графически на числовой прямой, на координатной плоскости;
 - проводить доказательные рассуждения для обоснования истинности утверждений. В повседневной жизни и при изучении других предметов:
- использовать числовые множества на координатной прямой и на координатной плоскости для описания реальных процессов и явлений;
- проводить доказательные рассуждения в ситуациях повседневной жизни, при решении задач из других предметов.

Числа и выражения

Выпускник научится:

• оперировать понятиями: натуральное и целое число, делимость чисел, обыкновенная дробь, десятичная дробь, рациональное число, иррациональное число, приближённое значение числа, часть, доля, отношение, процент, масштаб;

- оперировать понятиями: логарифм числа, тригонометрическая окружность, градусная мера угла, синус, косинус, тангенс и котангенс углов, имеющих произвольную величину;
- выполнять арифметические действия с целыми и рациональными числами, сочетая устные и письменные приемы, применяя при необходимости вычислительные устройства;
- выполнять несложные преобразования числовых выражений, содержащих степени чисел, корни из чисел, логарифмы чисел;
- сравнивать рациональные числа между собой, сравнивать с рациональными числами значения целых степеней чисел, корней натуральной степени из чисел, логарифмов чисел в простых случаях;
 - пользоваться оценкой и прикидкой при практических расчетах;
- изображать точками на координатной прямой целые и рациональные числа; целые степени чисел, корни натуральной степени из чисел, логарифмы чисел в простых случаях;
- выполнять несложные преобразования целых и дробно-рациональных буквенных выражений;
 - выражать в простейших случаях из равенства одну переменную через другие;
- вычислять в простых случаях значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
 - изображать схематически угол, величина которого выражена в градусах;
 - оценивать знаки синуса, косинуса, тангенса конкретных углов.

В повседневной жизни и при изучении других учебных предметов:

- выполнять действия с числовыми данными при решении задач практического характера, используя при необходимости справочные материалы и вычислительные устройства;
- соотносить реальные величины, характеристики объектов окружающего мира с их конкретными числовыми значениями;
- использовать методы округления и прикидки при решении практических задач повседневной жизни.

Выпускник получит возможность научиться:

- оперировать понятиями: радианная мера угла, числа e и π ;
- находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства;
- проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, корни, логарифмы и тригонометрические формулы;
- находить значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
 - изображать схематически угол, величин которого выражена в радианах;
- оценивать знаки тангенса конкретных углов; использовать при решении задач табличные значения тригонометрических функций углов;
 - выполнять перевод величины угла из радианной меры в градусную и обратно.

В повседневной жизни и при изучении других учебных предметов:

- выполнять действия числовыми данными при решении задач из разных областей знаний;
- оценивать, сравнивать и использовать при решении практических задач числовые значения реальных величин, конкретные числовые характеристики объектов окружающего мира.

Уравнения и неравенства

Выпускник научится:

- решать линейные уравнения и неравенства, квадратные уравнения;
- решать логарифмические и показательные уравнения вида $\log_a(bx+c)=d$,

 $a^{bx+c} = d$, (где d можно представить в виде степени с основанием a) и неравенства вида $\log_a x < d$, (где d можно представить в виде степени с основанием a);

- приводить несколько примеров корней тригонометрического уравнения вида $\sin x = a$; $\cos x = a$; $tg \ x = a$; $ctg \ x = a$, где a табличное значение соответствующей тригонометрической функции.
- В повседневной жизни и при изучении других учебных предметов составлять и решать уравнения, системы уравнений при решении несложных практических задач.

Выпускник получит возможность научиться:

- решать несложные рациональные, показательные, логарифмические, тригонометрические уравнения, неравенства и их системы, простейшие иррациональные уравнения и неравенства;
- использовать методы решения уравнений: приведение к виду «произведение равно нулю» или «частное равно нулю», замена переменных;
 - использовать метод интервалов для решения неравенства;
- использовать графический метод для приближенного решения уравнений и неравенств;
- изображать на тригонометрической окружности множество решений тригонометрических уравнений и неравенств.

В повседневной жизни и при изучении других учебных предметов:

- составлять и решать уравнения, системы уравнений и неравенства при решении несложных практических задач и задач из других учебных предметов;
- использовать уравнения и неравенства для построения простейших математических моделей реальных ситуаций или прикладных задач;
- интерпретировать полученный при решении уравнения, неравенства или системы результат, оценивать его правдоподобие в контексте заданной реальной ситуации или прикладной задачи.

Функции

Выпускник научится:

- оперировать понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание и убывание функции на числовом промежутке, наибольшее и наименьшее значения функции на числовом промежутке, периодическая функция, период;
- оперировать понятиями: прямая и обратная пропорциональность, линейная, квадратичная, логарифмическая и показательная функции, тригонометрические функции;
- распознавать графики функций прямой и обратной пропорциональности, линейной, квадратичной, показательной, логарифмической и тригонометрических функций и соотносить их с формулами, которыми они заданы;
 - находить по графику приближённо значения функций в заданных точках;
- определять по графику свойства функции (нули, промежутки знакопостоянства, промежутки монотонности, наибольшие и наименьшие значения и т.п.)
- строить эскиз графика функции, удовлетворяющей приведённому набору условий (промежутки возрастания и убывания, значение функции в заданной точке, точки экстремумов).
- В повседневной жизни и при изучении других учебных предметов определять по графикам свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания, промежутки знакопостоянства, период, и т.п.), интерпретировать свойства в контексте конкретной практической ситуации.

Выпускник получит возможность:

• оперировать понятиями: четная и нечетная функции;

- строить эскиз графика функции, удовлетворяющей приведенному набору условий (промежутки возрастания и убывания, значение функции в заданной точке, точки экстремумов, асимптоты, нули функции и т.д.);
- определять значение функции по значению аргумента при различных способах задания функции;
 - строить графики изученных функций;
- решать уравнения, простейшие системы уравнений, используя свойства функций и их графики;

В повседневной жизни и при изучении других учебных предметов:

- использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания, промежутки знакопостоянства, асимптоты, период, и т.п.);
- определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и т.п. (амплитуда, период и т.п.).

Элементы математического анализа

Выпускник научится:

- оперировать понятиями: производная функции в точке, касательная к графику функции, производная функции;
- определять значение производной функции в точке по изображению касательной к графику, проведенной в этой точке;
- решать несложные задачи на применение связи между промежутками монотонности и точками экстремума функции, с одной стороны, и промежутками знакопостоянства и нулями производной этой функции с другой.

В повседневной жизни и при изучении других учебных предметов:

- пользуясь графиками, сравнивать скорости возрастания (роста, повышения, увеличения и т.п.) или скорости убывания (падения, снижения, уменьшения и т.п.) величин в реальных процессах;
- соотносить графики реальных процессов и зависимостей с их описаниями, включающими характеристики скорости изменения (быстрый рост, плавное понижение и т.п.);
- использовать графики реальных процессов для решения несложных прикладных задач, в том числе определяя по графику скорость хода процесса.

Выпускник получит возможность:

- вычислять производную одночлена, многочлена, квадратного корня, производную суммы функций;
- вычислять производные элементарных функций и их комбинаций, используя справочные материалы;
- исследовать функции на монотонность, находить наибольшее и наименьшее значения функций, строить графики многочленов и простых рациональных функций с использованием аппарата математического анализа.
- В повседневной жизни и при изучении других учебных предметов решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик реальных процессов, нахождением наибольших и наименьших значений, скорости и ускорения и т.п., интерпретировать полученные результаты.

Статистика и теория вероятностей, логика и комбинаторика

Выпускник научится:

- оперировать основными описательными характеристиками числового набора: среднее арифметическое, медиана, наибольшее и наименьшее значения;
- оперировать понятиями: частота и вероятность события, случайный выбор, опыты с равновозможными элементарными событиями;

- вычислять вероятности событий на основе подсчёта числа исходов.
- В повседневной жизни и при изучении других предметов:
- оценивать, сравнивать и вычислять в простых случаях вероятности событий в реальной жизни;
- читать, сопоставлять, сравнивать интерпретировать в простых случаях реальные данные, представленные в виде таблиц, диаграмм, графиков.

Выпускник получит возможность:

- иметь представление: о дискретных и непрерывных случайных величинах, и распределениях, о независимости случайных величин; о математическом ожидании и дисперсии случайных величин; о нормальном распределении и примерах нормального распределённых случайных величин;
- понимать суть закона больших чисел и выборочного метода измерения вероятностей;
- иметь представление об условной вероятности и о полной вероятности, применять их в решении задач;
- иметь представление о важных частных видах распределений и применять их в решении задач;
- иметь представление о корреляции случайных величин, о линейной регрессии. В повседневной жизни и при изучении других предметов:
 - выбирать подходящие методы представления и обработки данных;
- решать несложные задачи на применение закона больших чисел в социологии, страховании, здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях.

Текстовые задачи

Выпускник научится:

- решать несложные текстовые задачи разных типов;
- анализировать условие задачи, строить для её решения математическую модель;
- понимать и использовать для решения задачи информацию, представленную в виде текстовой и символьной записи, схем, таблиц, диаграмм, графиков, рисунков;
 - действовать по алгоритму, содержащемуся в условии задачи;
 - использовать логические рассуждения при решении задачи;
- работать с избыточными условиями, выбирая из всей информации данные, необходимые для решения задачи;
- осуществлять несложный перебор возможных решений, выбирая из них оптимальные по критериям, сформулированным в условии задачи;
- анализировать и интерпретировать полученные решения в контексте условия задачи, выбирая решения, не противоречащие контексту;
 - решать задачи на расчет стоимости покупок, услуг, поездок и т.п.;
- решать несложные задачи, связанные с долевым участием во владении фирмой, предприятием, недвижимостью;
- решать задачи на простые проценты (системы скидок, комиссия) и на вычисление сложных процентов в различных схемах вкладов, кредитов, ипотек;
- решать практические задачи, требующие использование отрицательных чисел: на определение температуры, положения на временной оси (до нашей эры и после), глубины/высоты, на движение денежных средств (приход/расход) и т.п.;
- использование понятия масштаба для нахождения расстояний и длин на картах, планах местности, планах помещений, выкройках, при работе на компьютере и т.п.

Выпускник получит возможность научиться:

- решать задачи, требующие перебора вариантов, проверки условий выбора оптимального результата;
- анализировать и интерпретировать результаты в контексте условия задачи, выбирать решения, не противоречащие контексту;

• переводить при решении задачи информацию из одной формы в другую, используя при необходимости схемы, таблицы, графики, диаграммы.

Геометрия

Выпускник научится:

- оперировать понятиями: точка, прямая, плоскость, параллельность и перпендикулярность прямых и плоскостей;
- распознавать основные виды многогранников (призма, пирамида, прямоугольный параллелепипед, куб) и тел вращения (конус, цилиндр, сфера и шар);
 - изображать изучаемые фигуры от руки и с применением чертежных инструментов;
- делать (выносные) плоские чертежи из рисунков простых объёмных фигур: вид сверху, сбоку, снизу;
- извлекать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках;
- применять теорему Пифагора при вычислении элементов стереометрических фигур;
- находить объёмы и площади поверхностей простейших многогранников, тел вращения с применением формул;

В повседневной жизни и при изучении других предметов:

- соотносить абстрактные геометрические понятия и факты с реальными жизненными объектами и ситуациями;
- использовать свойства пространственных геометрических фигур для решения типовых задач практического содержания;
 - соотносить площади поверхностей тел одинаковой формы различного размера;
 - соотносить объёмы сосудов одинаковой формы различного размера;
- оценивать форму правильного многогранника после спилов, срезов и т.п. (определять количество вершин, ребер, граней полученных многогранников).

Выпускник получит возможность научиться:

- владеть стандартной классификацией пространственных фигур (пирамиды, призмы, параллелепипеды);
 - строить сечения многогранников;
- интерпретировать и преобразовывать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках;
 - описывать взаимное расположение прямых и плоскостей в пространстве;
- находить объёмы и площади поверхностей геометрических тел с применением формул;
 - вычислять расстояния и углы в пространстве;
- применять геометрические факты для решения задач, предполагающих несколько шагов решения, если условия применения заданы в явной форме;
 - решать задачи на нахождение геометрических величин по образцам и алгоритмам;
 - формулировать свойства и признаки фигур;
 - доказывать геометрические утверждения;
- в повседневной жизни и при изучении других предметов использовать свойства геометрических фигур для решения задач практического характера и задач из других областей знаний.

Векторы и координаты в пространстве

Выпускник научится:

- оперировать понятиями: декартовы координаты в пространстве, вектор, модуль вектора, равенство векторов, координаты вектора, угол между векторами, скалярное произведение векторов, коллинеарные и компланарные векторы;
 - находить координаты вершин куба и прямоугольного параллелепипеда;
 - находить сумму векторов и произведение вектора на число.

Выпускник получит возможность:

- находить расстояние между точками;
- находить угол между векторами, скалярное произведение, раскладывать вектор по двум неколлинеарным векторам;
 - задавать плоскость уравнением в декартовой системе координат;
 - решать простейшие задачи введением векторного базиса.

История и методы математики

Выпускник научится:

- описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;
- приводить примеры математических открытий и их авторов в связи с отечественной и всемирной историей;
 - понимать роль математики в развитии России;
- применять известные математические методы при решении стандартных математических задач;
- замечать и характеризовать математические закономерности в окружающей действительности.

Выпускник получит возможность научиться:

- представлять вклад выдающихся математиков в развитие математики и иных научных областей;
- применять известные математические методы при решении нестандартных математических задач; использовать основные методы доказательства, проводить доказательство и выполнять опровержение;
- на основе математических закономерностей характеризовать красоту и совершенство окружающего мира, а также произведений искусства;
- применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач.

Содержание тем учебного курса «Математика» 10 класс.

Содержание модуля «Алгебра и начала математического анализа»

1. Степень с действительным показателем – 13 часов

Действительные числа. Бесконечно убывающая геометрическая прогрессия. Арифметический корень натуральной степени. Степень с натуральным и действительным показателями.

2. Степенная функция – 16 часов

Степенная функция, ее свойства и график. Взаимно обратные функции. Сложные функции. Дробно-линейная функция. Равносильные уравнения и неравенства. Иррациональные уравнения. Иррациональные неравенства.

6. Показательная функция – 11 часов

Показательная функция, ее свойства и график. Показательные уравнения. Показательные неравенства. Системы показательных уравнений и неравенств.

7. Логарифмическая функция – 17 часов

Логарифмы. Свойства логарифмов. Десятичные и натуральные логарифмы. Логарифмическая функция, ее свойства и график. Логарифмические уравнения. Логарифмические неравенства.

8. Тригонометрические формулы- 24 часа

Радианная мера угла. Поворот точки вокруг начала координат. Определение синуса, косинуса и тангенса угла. Знаки синуса, косинуса и тангенса. Зависимость между синусом, косинусом и тангенсом одного и того же угла. Тригонометрические тождества.

Синус, косинус и тангенс углов ос и -а. Формулы сложения. Синус, косинус и тангенс двойного угла. Синус, косинус и тангенс половинного угла. Формулы приведения. Сумма и разность синусов. Сумма и разность косинусов. Произведение синусов и косинусов.

9. Тригонометрические уравнения – 20 часов

Уравнения $\cos x = a$, $\sin x = a$, tg x = a. Тригонометрические уравнения, сводящиеся к алгебраическим. Однородные и линейные уравнения. Методы замены неизвестного и разложения на множители. Метод оценки левой и правой частей тригонометрического уравнения. Системы тригонометрических уравнений. Тригонометрические неравенства.

10. Итоговое повторение - 1 час.

Содержание модуля «Геометрия»

Введение (4 часа)

Предмет стереометрии. Аксиомы стереометрии. Некоторые следствия из аксиом. **Параллельность прямых и плоскостей (20 часов)**

Пересекающиеся, параллельные и скрещивающиеся прямые. Параллельность прямой и плоскости, признак и свойства. Угол между прямыми в пространстве.

Перпендикулярность прямых.

Параллельность плоскостей, признаки и свойства. Параллельное проектирование. Изображение пространственных фигур.

Тетраэдр и параллелепипед, куб. Сечения куба, призмы, пирамиды.

Перпендикулярность прямых и плоскостей (22 часов)

Перпендикулярность прямой и плоскости, признаки и свойства. Перпендикуляр и наклонная. Теорема о трех перпендикулярах. Угол между прямой и плоскостью. Расстояние от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми. Перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла. Площадь ортогональной проекции многоугольника.

Многогранники (16 часов)

Понятие многогранника, вершины, ребра, грани многогранника. Развертка.

Многогранные углы Выпуклые многогранники. Теорема Эйлера.

Призма, ее основание, боковые ребра, высота, боковая и полная поверхности.

Прямая и наклонная призма. Правильная призма.

Пирамида, ее основание, боковые ребра, высота, боковая и полная поверхности. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.

Симметрия в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая и зеркальная). Примеры симметрий в окружающем мире.

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

Заключительное повторение курса геометрии 10 класса (6 часов).

(Курсивом выделен материал, который подлежит изучению, но **не включается** в Требования к уровню подготовки выпускников).

Тематическое планирование модуля «Алгебра и начала математического анализа»

Тема	Кол-во часов	Контрольные
		работы
Степень с действительным показателем	13	1
Степенная функция	16	1
Показательная функция	11	1
Логарифмическая функция	17	1

Тригонометрические формулы	24	1
Тригонометрические уравнения	20	1
Итоговое повторение	1	
Итого	102	6

Тематическое планирование модуля «Геометрия»

Тема		Контрольные работы	Зачеты
	Кол-во часов	_	
Введение	4		
Параллельность прямых и плоскостей	20	2	1
Перпендикулярность прямых и плоскостей	22	1	1
Многогранники	16	1	1
Повторение курса геометрии	6		
Итого	68	4	3

Содержание тем учебного курса «Математика» 11 класс.

Содержание модуля «Алгебра и начала математического анализа»

1.Тригонометрические функции-18 часов

Область определения и множество значений тригонометрических функций. Четность, нечетность, периодичность тригонометрических функций. Свойства функции $y = \cos x$: и ее график. Свойства функции $y = \sin x$; и ее график. Свойства функции $y = \tan x$ и ее график. Обратные тригонометрические функции.

2.Производная и ее геометрический смысл-18 часа

Предел последовательности. *Предел функции*. Непрерывность функции. Определение производной. Правила дифференцирования. Производная степенной функции. Производные элементарных функций. Геометрический смысл производной.

3.Применение производной к исследованию функций-13 часов

Возрастание и убывание функции. Экстремумы функции. Наибольшее и наименьшее значения функции. Производная второго порядка, выпуклость и точки перегиба. Построение графиков функций.

4.Первообразная и интеграл-10 часов.

Первообразная. Правила нахождения первообразных. Площадь криволинейной трапеции. Интеграл и его вычисление. Вычисление площадей фигур с помощью интегралов. Применение интегралов для решения физических задач. Простейшие дифференциальные уравнения.

5.Комбинаторика-9 часов

Математическая индукция. Правило произведения. Размещения с повторениями. Перестановки. Размещения без повторений. Сочетания без повторений и бином Ньютона.

6.Элементы теории вероятностей - 7часов

Вероятность события. Сложение вероятностей. Условная вероятность. Независимость событий. Вероятность произведения независимых событий. Формула Бернулли.

7.Итоговое повторение курса алгебры и начал математического анализа - 24 ч Уроки итогового повторения имеют своей целью не только восстановление в памяти учащихся

основного материала, но и обобщение, уточнение систематизацию знаний по алгебре и началам математического анализа за курс средней школы.

Повторение предлагается проводить по основным содержательно-методическим линиям и целесообразно выстроить в следующим порядке: вычисления и преобразования, уравнения и неравенства, функции, начала математического анализа.

При проведении итогового повторения предлагается широкое использование и комбинирование различных типов уроков (лекций, семинаров, практикумов, консультаций и т.е.) с целью быстрого охвата большого по объему материала. Необходимым элементом уроков итогового повторения является самостоятельная работа учащихся. Она полезна как самим учащимся, так и учителю для осуществления обратной связи. Формы проведения самостоятельных работ разнообразны: от традиционной работы с двумя, тремя заданиями до тестов и работ в форме рабочей тетрадей с заполнением пробелов в приведенных рассуждениях.

Содержание модуля «Геометрия»

1. Цилиндр, конус, шар (16 часов).

Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса. Площадь поверхности конуса. Усеченный конус. Сфера и шар. Уравнение сферы. Взаимное расположение сферы и плоскости. Касательная плоскость к сфере. Площадь сферы.

2. Объемы тел (17 часов).

Объем прямоугольного параллелепипеда. Объем прямой призмы и цилиндра. Объем наклонной призмы, пирамиды и конуса. Объемы шарового сегмента, шарового слоя и шарового сектора.

3.Векторы в пространстве (6 часов).

Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы.

4. Метод координат в пространстве. Движения (15 часов).

Координаты точки и координаты вектора. Скалярное произведение векторов. Уравнение плоскости. Движения. Преобразование подобия.

5. Обобщающее повторение при подготовке к итоговой аттестации по геометрии. (12 ч.)

повторение и систематизация материала 11 класса.

- повторить и обобщить знания и умения, учащихся через решение задач по следующим темам: метод координат в пространстве; многогранники; тела вращения; объёмы многогранников и тел вращения.

Тематическое планирование модуля «Алгебра и начала математического анализа»

Тема	Кол-во часов	Контрольные
		работы
Тригонометрические функции	18	1
Производная и ее геометрический смысл	18	1
Применение производной к исследованию функции	13	1
Первообразная и интеграл	10	1
Комбинаторика	9	1
Элементы теории вероятностей	7	1
Итоговое повторение курса алгебры и начал	24	
математического анализа		
Итого	99	7

Тематическое планирование модуля «Геометрия»

Тема	Кол-во	Контрольные	Зачеты
1 CM a	IXUJI-DU	Routhomenc	Jancibi

	часов	работы	
Цилиндр, конус, шар	16		1
Объёмы тел	17	1	1
Векторы в пространстве	6	1	1
Метод координат в пространстве.	15	1	1
Движения			
Заключительное повторение	12		
Итого	66	3	4

Учёт рабочей программы воспитания в тематическом планировании

Учитель, используя воспитательный потенциал каждого урока и учитывая рабочую программу воспитания, вправе:

- устанавливать доверительные отношений между учителем и учениками, способствующих позитивному восприятию учащимися требований и просьб учителя, активизации их познавательной деятельности;
- побуждать школьников соблюдать на уроке общепринятые нормы поведения, правила общения со старшими (учителями) и сверстниками (школьниками);
- привлекать внимание школьников к ценностному аспекту изучаемых на уроке явлений, организовывать работу детей с социально значимой информацией обсуждать, высказывать мнение;
- использовать воспитательные возможности содержания учебного предмета через демонстрацию детям примеров ответственного, гражданского поведения, проявления человеколюбия и добросердечности;
- применять на уроке интерактивные формы работы: интеллектуальные игры, дидактический театр, дискуссии, работы в парах и др.;
- организовывать шефство мотивированных и эрудированных учащихся над их неуспевающими одноклассниками;
- инициировать и поддерживать исследовательскую деятельность школьников.